

Annual Drinking Water Quality Report for Calendar Year 2019

Scottville Rural Water - IL 1170010

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. This report includes drinking water facts, information on violations (if applicable), and contaminants detected in your drinking water supply during calendar year 2019. Each year, we will provide you a new report. If you need help understanding this report or have general questions, please contact the person listed below.

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Contact Name:	Larry Garst
Telephone Number:	217-971-7805
E-mail (if available)	ldgarst@gmail.con

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Our source of water comes from, CC 1-MI S OF MODESTO

Type of Water SW Report Status

Location

Palmyra-Modersto Lake

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Other Facts about Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Source Water Assessments

We want our valued customers to be informed about their water quality. If you would like to learn more please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinios EPA. If you would like a copy of this information, please call our water operator at 217-971-7805. To view a summary version of the completed source water assessment, including: Importance of Source Water; Susceptibility to Contamation Determination; and documentation/recommendation of source water protection efforts, you may assess the Illinios EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: Palmyra-Modesto Water Commission Illinios EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems; hence, the reason for mandatory treatment for all surface water supplies in Illinios. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems) and shoreline erosion.

2019Regulated Contaminants Detected

The next several tables summarize contaminants detected in your drinking water supply: Since water is purchased from Palmyra-Modesto Water Commission results indicated with an asterisk (*) were provided to us by them.

Here are a few definitions and scientific terms which will help you understand the information in the contaminant detection tables.

AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Avg	Regulatory compliance with some MCLs is based on running annual average of monthly samples.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the Maximum Contaminant Level Goal as feasible using the best
	available treatment technology.
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MRDL	Maximum Residual Disinfectant Level: The highest level of disinfectant allowed in drinking water.
MRDLG	Maximum Residual Disinfectant Level Goal: The level of disinfectant in drinking water below which there is no known or expected risk to health. MRDLGs allow for a margin of safety.
N/A	Not Applicable
NTU	Nephelometric Turbidity Units
pCi/L	picocuries per liter (a measure of radioactivity)
ppb	Parts per billion or micrograms per liter (ug/L) - or one ounce in 7,350,000 gallons of water.
ppm	Parts per million or milligrams per liter (mg/L) - or one ounce in 7,350 gallons of water.
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Coliform Bacteria	MCLG	Total Coliform MCL	Highest Number of Positive Samples	Fecal Coliform or E. coli MCL	Total No. of Positive E. coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
	0	MCL: presence of coliform bacteria in > 5% of monthly samples (for systems that collect 40 or more samples/month). > 1 positive monthly sample (for systems that collect < 40 samples/month).		Fecal Coliform or E. Coli MCL: A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive	0	N	Naturally present in the environment

LEAD AND COPPER

DEFINITIONS:

ACTION LEVEL GOIAL (ALG): the level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety

ACTION LEVEL; The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper									
	Date Sampled	MCLG	Action Level	90 th	# Sites Over	Units	Violation	Likely Source of Contamination	
			(AL)	Percentile	AL				
Copper	2019	1.3	1.3	0016	0	ppm	n	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Lead	2017	0	15	2.3	2	ppb	Y	Corrosion of household plumbing systems; erosion of natural deposits.	

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Scottville Rural Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Disinfectants & Disinfection	Collection	Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Source of Contamination	
Byproducts	Date	Detected	Detected					·	
Chloramines	2019	0.6	0.5-0.6	MRDLG 4	MRDL 4	ppm	N	Water additive used to control microbes	
Haloacetic acids	2019	21	18.7-25.3	No goal	60	ppm	N	By-product of drinking water disinfection	
(HHA5)				for total					
Total Trihalomethanes	2019	44	22.2-50.3	No goal	80	ppm	N	By-product of drinking water disinfection	
(TTHM)				for total					
Radiological Contaminants									
Combined radium 226/228	7/18/2011	1.558	1.558 - 1.558	0	5	pCi/L	N	Erosion of natural deposits	
Gross alpha excluding radon and	7/18/2011	2.11	2.11 - 2.11	0	15	PCi/L	N	Erosion of natural deposits	
uranium									
	2010							7 222	
atrazine	2019	1	0.37-3.4	3	3	ppb	N	Runoff from herbicide used on row crops	
simazine	2018	0.44	0 - 044	4	4	ppb	N	Herbicide runoff	
Inorganic Contaminants									
Barium	2019	0.054	0.54-0.54	2	2	ppm	N	Discharged of drilling wastes; discharge from metal	
								refineries; erosion of natural deposits	
fluoride	2019	.3	0.288-0.288	4	4	ppm	N	Erosion of natural deposits; water additives which	
								promotes strong teeth; discharge from fertilizer and	
16	11/15/2016			1.50	1.50		3.7	aluminum factories	
Manganese	11/15/2016	63	54 – 63	150	150	Ppm	N	This contaminant is not currently regulated by the	
manganese	2019	39	39-39	150	150	ppm	N	USEPA. However, the state regulates. Erosion of natural	
Nitrate (measured as nitrogen)	2019	0.17	0.17-0.17	10	10	nnm	N	deposits.	
Nitrate (measured as mirogen)	2019	0.17	0.17-0.17	10	10	ppm	IN .	Runoff from fertilizer use; leaching from septic tanks,	
sodium	2019	14	14-14			nnm	N	sewage; erosion of natural deposits. Erosion from naturally occurring deposits; used in water	
Soutuili	2017	17	14-14			ppm	11	softener regeneration	
						1	<u>l</u>	Solicine regeneration	

Turbidity

Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

WINTER CONTROL OF THE								
Limit (Treatment Level Detected		Violation	Likely Source of Contamination					
Technique)								
0.3 NTU	98%	N	Soil Runoff					
1 NTU	0.35	N	Soil Runoff					
	Technique) 0.3 NTU	Technique) 0.3 NTU 98%	Technique) 98% N					

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set by IEPA, unless a TOC violation is noted in the violation section.

•		

